

The number of decimal places (d.p.) tells you how many digits are needed after the decimal point.

Examples:
5.4837 is 5.484 to 3 d.p.
5.4837 is 5.48 to 2 d.p.
5.4837 is 5.5 to 1 d.p.
3.697 is 3.70 to 2 d.p.
and 3.7 to 1 d.p.
www.10ticks.co.uk

The number of significant figures (s.f.) shows how many digits are in the number.

$$
\begin{aligned}
& \text { eg } 7891 \text { is } 8000 \text { to } 1 \text { s.f. } \\
& 3032 \text { is } 3030 \text { to } 3 \text { s.f. } \\
& 5.7125 \text { is } 5.71 \text { to } 3 \text { s.f. } \\
& 0.002812 \text { is } 0.003 \text { to } 1 \text { s.f. }
\end{aligned}
$$

Zeros at the beginning and end of a number are not counted as they are only there to keep digits in the correct place value column.

Example 799 is 800 to 1s.f and to 2 s.f.

Standard Form

n is a positive or $1 \leq a<10$

Examples
mom
$2510000=2.51 \times 10^{6}$
Mrn
$0.00003105=3.105 \times 10^{-5}$

Laws of Indices

$$
n^{a} \times n^{b}=n^{a+b}
$$

Example: $7^{3} \times 7^{2}=7^{3+2}=7^{5}$

$$
7^{3} \times 7^{2}=7 \times 7 \times 7 \times 7 \times 7=7^{5}
$$

$$
\frac{n^{a}}{n^{b}}=n^{a} \div n^{b}=n^{a-b}
$$

Example: $\frac{7^{3}}{7^{2}}=7^{3} \div 7^{2}=7^{3-2}=7^{1}=7$

$$
7^{3} \div 7^{2}=\frac{1}{1} \times x^{1} 7 \times 7=7^{1}=7
$$

Equal Angles
Vertically opposite angles

Metric Measures 19	Area 20
```10 millimetres (mm) = 1 centimetre (cm) 100 centimetres (cm) = 1 metre (m) 1000 metres (m) = 1 kilometre (km) 1000 grams (g) = 1 kilogram (kg) 1000 millilitres (ml) = 1 litre (1)```	Area is measured in square units, units ${ }^{2}$ e.g. $\mathrm{cm}^{2}, \mathrm{~m}^{2}$ and $\mathrm{km}^{2}$.   The area of a 2D (flat) shape is the amount of space inside the shape.   The surface area of a 3D (solid) shape is the area of each surface added up.   www.10ticks.co.uk
Triangles   or $\frac{b \times h}{2}$   or $\frac{1}{2}(b \times h)$	Parallelograms and Trapeziums $A=b \times h$ $\begin{aligned} & \text { A }=\frac{a+b}{2} \times h \\ & \text { or } \begin{array}{l} (a+b) h \\ \text { or } \\ \frac{1}{2}(a+b) h \end{array} \end{aligned}$
$\begin{aligned} & C=\pi d \\ & \text { or } \\ & C=2 \pi r \end{aligned}$ $l=\frac{x}{360} \times 2 \pi r$	Areas of Circles and Sectors $A=\pi r^{2}$ $A=\frac{x}{360} \times \pi r^{2}$




Rotations are described by
1). a direction (clockwise/anticlockwise)
2). amount of turn (angle in degrees)
3). a centre of rotation (a co-ordinate).

Triangle A is rotated
1). anticlockwise
2). through $90^{\circ}$
3). with centre of rotation (1,0).

www.10ticks.co.uk

## Translations

A translation slides an object, without turning it or changing its size.

Vector notation is used to describe translations.

$\binom{3}{-2}$ means move 3 to the right and 2 down
www.10ticks.co.uk

Vocabulary for Algebra	
Word	Examples
Term	$3,9,1,4 f, g^{2},-4 a^{3} b^{2}, 5 c$
Expression	$2 a+5 b, c^{3}-7, p-4 q+5 r$
Equation	$n+2=9, m^{2}=25,8 d-2 e=9$
Formula	$A=\pi r^{2}, v=u+a t, a^{2}=b^{2}+c^{2}$
Inequality	$5>2, p+q \geq 7,6 \leq x<11$
Identity	$4(a+b) \equiv 4 a+4 b$         $(u+v)^{2} \equiv u^{2}+2 u v+v^{2}$

Reflections are described by a mirror line.


Reflection in the line $x=1$.


Reflection in the line $y=x$.

Enlargements are described by
1). a scale factor (a number),
2). a centre of enlargement (a co-ordinate).


A is enlargement scale factor 2 about $(1,4)$ $B$ is enlargement scale factor $\frac{1}{2}$ about $(1,4)$
www.10ticks.co.uk
Sequences ( $\mathrm{n}^{\text {th }}$ Term)

## Linear



Quadratic



$$
a^{2}-b^{2}=(a-b)(a+b)
$$



## Examples

$$
\begin{aligned}
& 7^{2}-2^{2}=(7-2)(7+2)=5 \times 9=45 \\
& 49^{2}-46^{2}=(49-46)(49+46)=3 \times 95=285 \\
& d^{2}-64=d^{2}-8^{2}=(d-8)(d+8) \\
& 9 u^{2}-4 v^{4}=(3 u)^{2}-\left(2 v^{2}\right)^{2}=\left(3 u-2 v^{2}\right)\left(3 u+2 v^{2}\right) \\
& \text { Simultaneous Equations } \\
& x+y=4 \text { and } y=\frac{1}{2} x-\frac{1}{2} \\
&
\end{aligned}
$$

Speed $=\frac{\text { Distance }}{\text { Time }}$
Time $=\frac{\text { Distance }}{\text { Speed }}$
Distance $=$ Speed $\times$ Time Force $=$ Pressure $\times$ Area
$\qquad$
www.10ticks.co.uk

## Distance Time Graphs



$$
\text { Gradient }=\frac{y}{x}=\text { velocity }
$$

Primary dafte is data that is collected by you. You do a survey, experiment etc.

Secondary dafio has been collected by someone else. This may be found in journals, newspapers, the internet etc.

Discreste date can only have certain values. These values jump along the number line e.g. shoe size, number of shoes.

Gomitunous dafe can have any value along the number line (within a range) e.g. height, weight, time.

The mode is the most common.


The modal colour of the spots is brown because there are more brown spots than any other colour.

When information is grouped in classes, the modal class is the most common class.
www.10ticks.co.uk
Finding the Mean
52

## Median

The median is the middle value after the numbers have been arranged in order.

Median 6
Example: 3, 5, 6.) 8, 15
If there is no single middle value, the median is the mean of the two middle values.
$\frac{8+11}{2}=\frac{19}{2}$ Median 9.5
Example: 6, 7, 8, 11. 14, 17
www.10ticks.co.uk
$\frac{\text { Median from a Frequency }}{\text { Table } 5^{\text {th }} 6^{\text {th }} 7^{\text {th }} \text { and } 8^{8^{\text {th }}}} 5$


Think of this as a list. The scores are: $5,6,6,6,7,7,7,7,8,8,8,8,8,8,9$.

There are 15 scores. The $8^{\text {th }}$ score, 7 , is the median because it is the middle score.

The Mean from a Frequency Table

Age, $a$	Frequency, $f$	$a \times f$
11	3	$11 \times 3=33$
12	5	$12 \times 5=60$
13	2	$13 \times 2=26$
Total	10	125

$$
\text { Mean age }=\frac{125}{10}=12.5
$$

For grouped data
(e.g. $120<h \leq 126$ )
multiply the mid-point ( 123 ) of each class by the frequency.

## 0 The probability scale

Probability is always written as a fraction, a decimal or a percentage

$$
\text { e.g. } \frac{1}{2}, 0.5, \text { or } 50 \% \text {. }
$$

$$
\begin{aligned}
& \text { Relative } \\
& \text { Frequency }
\end{aligned}=\frac{\text { Number of succesful trials }}{\text { Total number of trials }}
$$

If the probability of A happening is $x$, the probability of A not happening is $1-\boldsymbol{x}$.

$$
\text { or if } P(A)=x \text { then } P\left(A^{\prime}\right)=1-x \text {. }
$$

www.10ticks.co.uk

## Set Notation and Venn Diagrams

$A^{\prime} \rightarrow$ the complement of $A($ not $A)$
$A \cup B \rightarrow$ the union of $A$ and $B$ (combined)
$A \cap B \rightarrow$ the intersection of $A$ and $B$ (overlap)
$\Omega$ or $\xi \rightarrow$ the universal se $\dagger$



## Dependent and Independent Events

When the outcome of one event depends on the outcome of another event, the events are dependent.

When the outcome of one event has no effect on the outcome of another event, the events are independent.

To find the probabilty of two independent events, $A$ and $B$, happening, multiply the probabilities. (AND rule)

```
P(A and B)=P(A\capB)=P(A) xP(B)
```

www.10ticks.co.uk
Correlation and Line of Best Fit
If two events cannot happen at the same time they are mutually exclusive.

To find the probability of either $A$ or $B$ happening, for mutually exclusive events, add the probabilities. (OR rule)

$$
P(A \text { or } B)=P(A \cup B)=P(A)+P(B)
$$

If events are not mutually exclsuive, add the probabilities, then subtract the probability of both happening.
$P(A$ or $B)=P(A \cup B)=P(A)+P(B)-P(A$ and $B)$


As one variable gets bigger, the other one also gets bigger.

Negative Correlation


As one variable gets bigger, the other one gets smaller.

No
Correlation

No line of best fit

3-point moving average - find mean of first 3 pieces of data, move along one - find mean of next 3 pieces of data etc.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul
Cost, $£$	3	4	5	6	1	2	3
Mov Av		4	5	4	3	2	



Plot at mid-points. Smooths out seasonal variations

Tick the boxes when you know the facts.


Good Keep it simple Use tick boxes
Ensure all responses are covered
Bad No leading questions
No personal questions
No overlapping responses
Randon sample: all members of the population have equal chance of being chosen.
Stratified sample: the population is divided into layers. The same proportion from each layer is surveyed as from the population.

## How to use these revision cards

These cards are for Foundation GCSE.
Print out the revision cards in colour. Use the thickest paper your printer can take. On the back of the cards make notes or write typical exam questions for this fact.
When you know the fact, tick the box for that card. Each card is numbered.
The cards are one small part of the revision process and only cover the key facts.
The best practise is to go through as many past papers as possible.
Go to www.10ticks.co.uk/revision/GCSE for past papers.
©Fisher Educational Ltd. 2016.
Copyright belongs to Fisher Educational Ltd. All Rights reserved. The Revisison cards are for personal use only. No unauthorised copying or distribution allowed without the express written permission of Fisher Educational Ltd. '10TICKS', and '10TICKS.co.uk' and/or other 10TICKS services referenced are trademarks of Fisher Educational Ltd in the UK and/or other countries.

## 10TICKS offer for Parents

10ticks has been used in schools across the UK for over 15 years, with $70 \%$ of secondary schools using their award winning resources. Get your child to the top of the maths class with a 10ticks Home Learning System subscription. Your school has been given a unique discount code from award winning 10ticks for their online maths Home Learning System. This code offers you substantial savings on a fantastic maths resource. Also, for every parent that purchases the System, the school is rewarded with $£ 1$ credit that can be used to buy more maths resources from 10ticks. So your child benefits twice.

	Annual Subscription*	Annual Subscription with code*
1-user (1 child + parent)	$£ 79.00$	$£ 15.00$
2-user (2 children + parent $)$	$£ 85.00$	$£ 18.00$
3-user (3 children + parent $)$	$£ 89.00$	$£ 21.00$

* Check website for latest offer price. Prices at time of printing this document, 19/03/2018

Your school is using the 10ticks resources and has been given a unique discount code for the award winning online maths Home Learning System.

Spalding Academy
Look at the huge savings you can make with your unique school code: HLS53488

## What does the 10ticks Home Learning System provide?

The 10ticks Home Learning System is an innovative online solution offering comprehensive mathematical support and resources to help bring the family together and your child to succeed. There are 100s of engaging video guides, more than 4000 award winning working worksheets and 100s of fun interactive tests and games, suitable for both primary and secondary school children as 10 ticks covers every maths topic from Reception to Year 11.
With so many maths resources you will have the flexibility to use the Home Learning System in a way that will benefit your child best. 10ticks is also great for revision, or for providing a bit of extra help, no matter what your child's ability. Access to the System will allow you and your child to $\log$ in whenever, and wherever you need to, with $24 / 7$ access to our resources.

## How to subscribe to 10 ticks using your code

1). Go to http://www.10ticks.co.uk/offers
2). Click 'Buy' on the number of users you want The offer is only valid for the 12 month option with 1,2 or 3 users
3). Log in with your existing details or select 'Register as a parent' and register with 10 ticks
4). A shopping cart will appear showing a one year subscription and the number of users
5). Type in the unique school code into the 'Affiliate Code' box and click Apply
6). Check that the price has been correctly updated and press Checkout
7). Ensure your personal details are correct and press Confirm Details
8). You will then be asked to put in your card details
9). Congratulations! You have just purchased the 10ticks Home Learning System

If you would like any more information about 10ticks you can visit our website at www.10ticks.co.uk or emailinfo@10ticks.co.uk

